Existential Definability in Arithmetic
نویسنده
چکیده
منابع مشابه
Implicit Definability in Arithmetic
We consider implicit definability over the natural number system N,+,×,=. We present a new proof of two theorems of Leo Harrington. The first theorem says that there exist implicitly definable subsets of N which are not explicitly definable from each other. The second theorem says that there exists a subset of N which is not implicitly definable but belongs to a countable, explicitly definable ...
متن کاملDefinability and Decision Problems in Arithmetic
Introduction. In this paper, we are concerned with the arithmetical definability of certain notions of integers and rationals in terms of other notions. The results derived will be applied to obtain a negative solution of corresponding decision problems. In Section 1, we show that addition of positive integers can be defined arithmetically in terms of multiplication and the unary operation of s...
متن کاملExistential definability of modal frame classes
A class of Kripke frames is called modally definable if there is a set of modal formulas such that the class consists exactly of frames on which every formula from that set is valid, i. e. globally true under any valuation. Here, existential definability of Kripke frame classes is defined analogously, by demanding that each formula from a defining set is satisfiable under any valuation. This is...
متن کاملExistential ∅-Definability of Henselian Valuation Rings
In [1], Anscombe and Koenigsmann give an existential ∅-definition of the ring of formal power series F [[t]] in its quotient field in the case where F is finite. We extend their method in several directions to give general definability results for henselian valued fields with finite or pseudo-algebraically closed residue fields. §
متن کاملAn Isomorphism Between Monoids of External Embeddings: About Definability in Arithmetic
We use a new version of the Definability Theorem of Beth in order to unify classical Theorems of Yuri Matiyasevich and Jan Denef in one structural statement. We give similar forms for other important definability results from Arithmetic and Number Theory. A.M.S. Classification: Primary 03B99; Secondary 11D99.
متن کامل